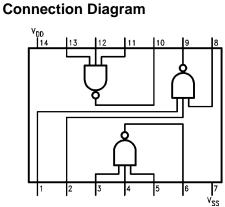
Revised August 2000

## **CD4023BC Buffered Triple 3-Input NAND Gate**

#### **General Description**

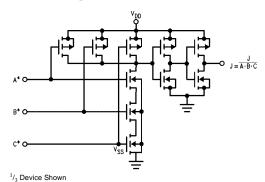
FAIRCHILD

SEMICONDUCTOR


These triple gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and Pchannel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain. All inputs are protected against static discharge with diodes to  $V_{DD}$  and  $V_{SS}$ .

#### **Features**

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V<sub>DD</sub> (typ)
- Low power TTL compatibility:
- fan out of 2 driving 74L or 1 driving 74LS ■ 5V–10V–15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 µA at 15V over full temperature range


#### **Ordering Code:**

| Order Number | Package Number | Package Description                                                         |
|--------------|----------------|-----------------------------------------------------------------------------|
| CD4023BCM    | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow |
| CD4023BCS    | M14D           | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| CD4023BCN    | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide       |



Top View

#### **Block Diagram**



\*All Inputs Protected by Standard CMOS Input Protection Circuit.

October 1987

© 2000 Fairchild Semiconductor Corporation DS005956 www.fairchildsemi.com

#### Absolute Maximum Ratings(Note 1) (Note 2)

| DC Supply Voltage (V <sub>DD</sub> )  | –0.5 $V_{DC}$ to +18 $V_{DC}$                   |
|---------------------------------------|-------------------------------------------------|
| Input Voltage (V <sub>IN</sub> )      | –0.5 $V_{DC}$ to $V_{DD} \mbox{+} 0.5 \ V_{DC}$ |
| Storage Temp. Range (T <sub>S</sub> ) | -65°C to +150°C                                 |
| Power Dissipation (P <sub>D</sub> )   |                                                 |
| Dual-In-Line                          | 700 mW                                          |
| Small Outline                         | 500 mW                                          |
| Lead Temperature (T <sub>L</sub> )    |                                                 |
| (Soldering, 10 seconds)               | 260°C                                           |
|                                       |                                                 |

# Recommended Operating Conditions

DC Supply Voltage (V<sub>DD</sub>) Input Voltage (V<sub>IN</sub>) Operating Temperature Range (T<sub>A</sub>)

 $\begin{array}{c} 5 \ V_{DC} \ to \ 15 \ V_{DC} \\ 0 \ V_{DC} \ to \ V_{DD} \ V_{DC} \\ -40^\circ C \ to \ +85^\circ C \end{array}$ 

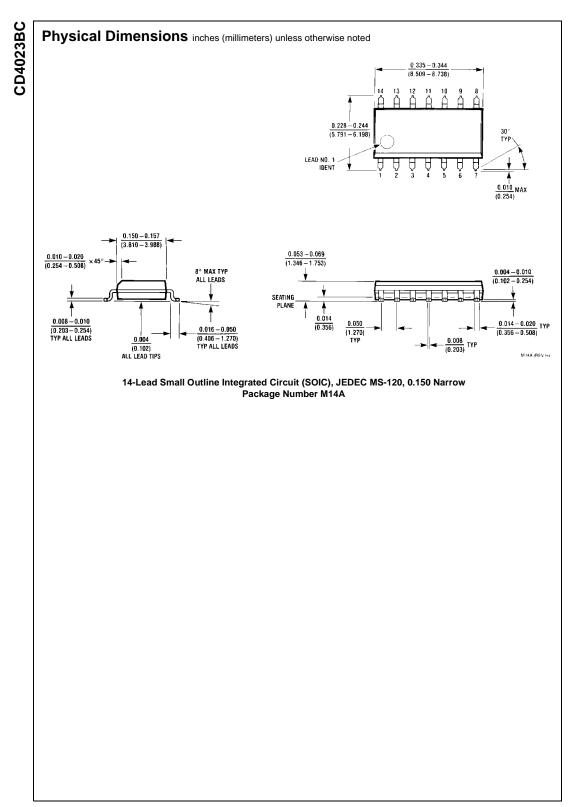
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

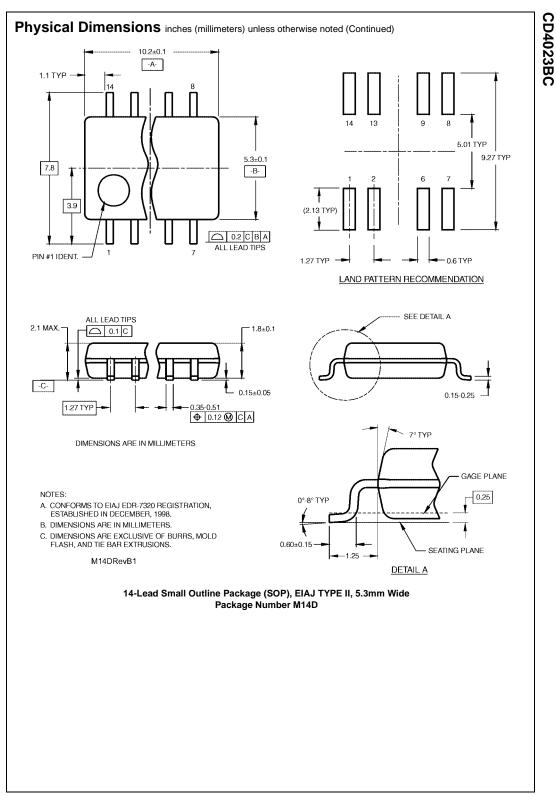
Note 2:  $V_{SS} = 0V$  unless otherwise specified.

### DC Electrical Characteristics (Note 3)

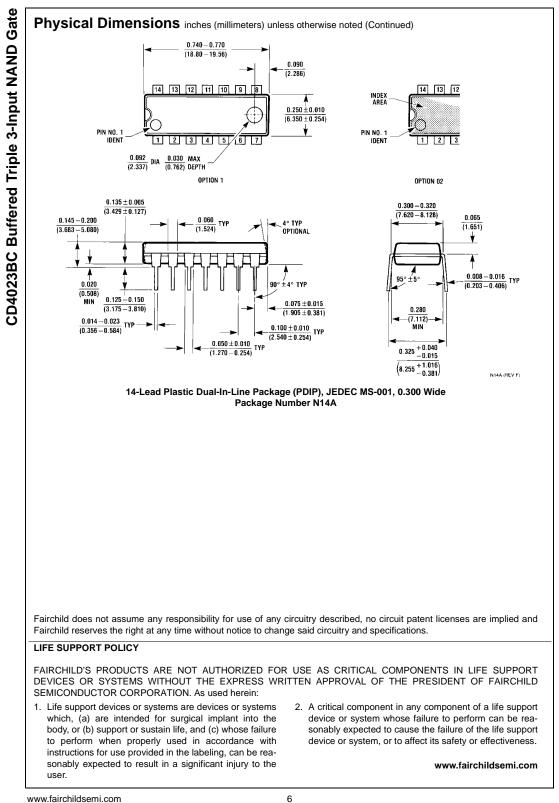
| Symbol          | Parameter                 | Conditions                                                       | <b>−40°C</b> |      | +25°C |                   |      | +85°C |      | Units |
|-----------------|---------------------------|------------------------------------------------------------------|--------------|------|-------|-------------------|------|-------|------|-------|
| Symbol          | Falameter                 | Conditions                                                       | Min          | Тур  | Min   | Тур               | Max  | Min   | Max  | Units |
| I <sub>DD</sub> | Quiescent Device Current  | $V_{DD} = 5V$                                                    |              | 1.0  |       | 0.004             | 1.0  |       | 7.5  |       |
|                 |                           | $V_{DD} = 10V$                                                   |              | 2.0  |       | 0.005             | 2.0  |       | 15   | μA    |
|                 |                           | $V_{DD} = 15V$                                                   |              | 4.0  |       | 0.006             | 4.0  |       | 30   |       |
| V <sub>OL</sub> | LOW Level Output Voltage  | $V_{DD} = 5V$                                                    |              | 0.05 |       | 0                 | 0.05 |       | 0.05 |       |
|                 |                           | $V_{DD} = 10V$                                                   |              | 0.05 |       | 0                 | 0.05 |       | 0.05 | V     |
|                 |                           | $V_{DD} = 15V$                                                   |              | 0.05 |       | 0                 | 0.05 |       | 0.05 |       |
| V <sub>OH</sub> | HIGH Level Output Voltage | $V_{DD} = 5V$                                                    | 4.95         |      | 4.95  | 5                 |      | 4.95  |      |       |
|                 |                           | $V_{DD} = 10V$                                                   | 9.95         |      | 9.95  | 10                |      | 9.95  |      | V     |
|                 |                           | $V_{DD} = 15V$                                                   | 14.95        |      | 14.95 | 15                |      | 14.95 |      |       |
| V <sub>IL</sub> | LOW Level Input Voltage   | V <sub>DD</sub> =5V, V <sub>O</sub> =4.5V                        |              | 1.5  |       | 2                 | 1.5  |       | 1.5  |       |
|                 |                           | V <sub>DD</sub> =10V, V <sub>O</sub> =9.0V  I <sub>O</sub>  <1µA |              | 3.0  |       | 4                 | 3.0  |       | 3.0  | V     |
|                 |                           | V <sub>DD</sub> =15V, V <sub>O</sub> =13.5V                      |              | 4.0  |       | 6                 | 4.0  |       | 4.0  |       |
| VIH             | HIGH Level Input Voltage  | V <sub>DD</sub> =5V, V <sub>O</sub> =0.5V                        | 3.5          |      | 3.5   | 3                 |      | 3.5   |      |       |
|                 |                           | $V_{DD}$ =10V, $V_{O}$ =1.0V  I_{O} <1\mu A                      | 7.0          |      | 7.0   | 6                 |      | 7.0   |      | V     |
|                 |                           | V <sub>DD</sub> =15V, V <sub>O</sub> =1.5V                       | 11.0         |      | 11.0  | 9                 |      | 11.0  |      |       |
| l <sub>OL</sub> | LOW Level Output Current  | $V_{DD} = 5V, V_{O} = 0.4V$                                      | 0.52         |      | 0.44  | 0.88              |      | 0.36  |      |       |
|                 | (Note 4)                  | $V_{DD} = 10V, V_{O} = 0.5V$                                     | 1.3          |      | 1.1   | 2.2               |      | 0.90  |      | mA    |
|                 |                           | $V_{DD} = 15V, V_{O} = 1.5V$                                     | 3.6          |      | 3.0   | 8                 |      | 2.4   |      |       |
| I <sub>OH</sub> | HIGH Level Output Current | $V_{DD} = 5V, V_{O} = 4.6V$                                      | -0.52        |      | -0.44 | -0.88             |      | -0.36 |      |       |
|                 | (Note 4)                  | $V_{DD} = 10V, V_{O} = 9.5V$                                     | -1.3         |      | -1.1  | -2.2              |      | -0.90 |      | mA    |
|                 |                           | $V_{DD} = 15V, V_{O} = 13.5V$                                    | -3.6         |      | -3.0  | -8                |      | -2.4  |      |       |
| I <sub>IN</sub> | Input Current             | $V_{DD} = 15V, V_{IN} = 0V$                                      |              | -0.3 |       | -10 <sup>-5</sup> | -0.3 |       | -1.0 | μA    |
|                 |                           | $V_{DD} = 15V, V_{IN} = 15V$                                     |              | 0.3  |       | 10 <sup>-5</sup>  | 0.3  |       | 1.0  | μΛ    |

Note 3:  $V_{SS} = 0V$  unless otherwise specified.


Note 4:  $I_{OH}$  and  $I_{OL}$  are tested one output at a time.


|                    | C, $C_L = 50 \text{ pF}$ , $R_L = 200 \text{k}$ , unless otherwise speci | liou           |     |     |     |       |
|--------------------|--------------------------------------------------------------------------|----------------|-----|-----|-----|-------|
| Symbol             | Parameter                                                                | Conditions     | Min | Тур | Max | Units |
| t <sub>PHL</sub> F | Propagation Delay, HIGH-to-LOW Level                                     | $V_{DD} = 5V$  |     | 130 | 250 |       |
|                    |                                                                          | $V_{DD} = 10V$ |     | 60  | 100 | ns    |
|                    |                                                                          | $V_{DD} = 15V$ |     | 40  | 70  |       |
| t <sub>PLH</sub>   | Propagation Delay, LOW-to-HIGH Level                                     | $V_{DD} = 5V$  |     | 110 | 250 |       |
|                    |                                                                          | $V_{DD} = 10V$ |     | 50  | 100 | ns    |
|                    |                                                                          | $V_{DD} = 15V$ |     | 35  | 70  |       |
| t <sub>THL</sub> , | Transition Time                                                          | $V_{DD} = 5V$  |     | 90  | 200 |       |
| t <sub>TLH</sub>   |                                                                          | $V_{DD} = 10V$ |     | 50  | 100 | ns    |
|                    |                                                                          | $V_{DD} = 15V$ |     | 40  | 80  |       |
| C <sub>IN</sub>    | Average Input Capacitance                                                | Any Input      |     | 5   | 7.5 | pF    |
| CPD                | Power Dissipation Capacity (Note 6)                                      | Any Gate       |     | 17  |     | pF    |

Note 5: AC Parameters are guaranteed by DC correlated testing.


Note 6:  $C_{PD}$  determines the no load AC power consumption of any CMOS device. For complete explanation, see Family Characteristics Application Note AN-90.

www.fairchildsemi.com





www.fairchildsemi.com



This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.