National Semiconductor

Semiconductors

Linear I.C.'s - Operational Amplifiers

LM748 Series Operational Amplifiers

REFERENCE TABLE

Code	Stock No.
LM748H	28915H
LM748CH	28916F
LM748CN	30602F

GENERAL DESCRIPTION

The LM748 series is a general purpose operational amplifier built on a single silicon chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients.

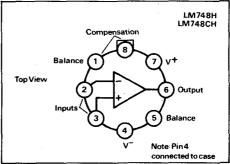
FEATURES

Frequency compensation with a single 30pF capacitor

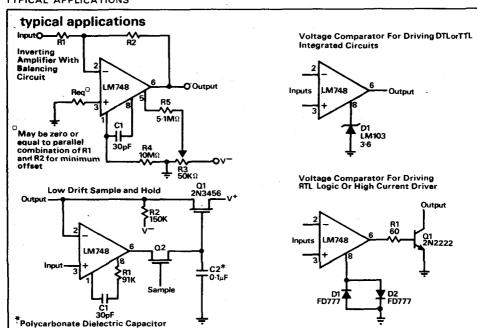
Operation from ±5V to ±20V Low current drain: 1.8mA at ±20V

Continuous short-circuit protection Operation as a comparator with differential inputs as high as $\pm 30 \text{V}$

No latch-up when common mode range is exceeded


Same pin configuration as the LM101

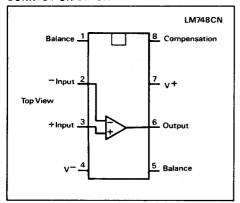
TYPICAL APPLICATIONS


The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimise compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.

The LM748 is specified for operation over the —55°C to +125°C military temperature range. The LM748C is specified for operation over the 0°C to +70°C temperature range.

CONNECTION DIAGRAMS

See outline drawing No. 97 for dimensions.



National Semiconductor

Semiconductors

Linear I.C.'s - Operational Amplifiers

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±22V 500mW		
Power Dissipation (Note 1)			
Differential Input Voltage	±30V		
Input Voltage (Note 2)	±15V		
Output Short-Circuit Duration (Note 3)	Indefinite		
Operating Temperature Range LM748 LM748C	—55°C to +125°C 0°C to +70°C		
Storage Temperature Range	—65°C to +150°C		
Lead Temperature (Soldering, 10 sec)	300°C		

See outline drawing No. 103 for dimensions.

ELECTRICAL CHARACTERISTICS (Note 4)

Parameter	Conditions	Min.	Тур.	Max.	Units
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \le 10 \text{ k}\Omega$		1.0	5.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		40	200	nÁ
Input Bias Current	$T_A = 25^{\circ}C$		120	500	nA
Input Resistance	$T_A = 25^{\circ}C$	300	800		kΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		1.8	2.8	mΑ
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 \text{ k}\Omega$	50	160		V/mV
Input Offset Voltage	$R_s \le 10 \text{ k}\Omega$			6.0	mV
Average Temperature Coefficient of Input Offset	$R_{s} \leq 50\Omega$		3.0		μV/°C
Voltage	$R_s \leq 10 \text{ k}\Omega$		6.0		μV/°C
Input Offset Current	T _A = 0°C to 70°C T _A = -55°C to 125°C			300 500	nA nA
Input Bias Current	$T_A = 0^{\circ}C \text{ to } 70^{\circ}C$ $T_A =55^{\circ}C \text{ to } 125^{\circ}C$			0.8 1.5	μ Α μ Α
Supply Current	$T_A = +125^{\circ}C$; $V_S = \pm 15V$ $T_A =55^{\circ}C$ to 125°C		1.2 1.9	2.25 3.3	mA mA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2 \text{ k}\Omega$	25			V/mV
Output Voltage Swing	$V_S = \pm 15V, R_L = 10\Omega$ $R_L = 2 k\Omega$	±12 ±10	±14 ±13		> >
Input Voltage Range	$V_s = \pm 15V$	±12			٧
Common Mode Rejection Ratio	$R_{\rm S} \leq 10 \; k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_s \le 10 \text{ k}\Omega$	77	90		dB
	1	1			

Note 1: For operating at elevated temperatures the devices must be derated based on a maximum junction to case thermal resistance of 45°C per watt, or 150°C per watt junction to ambient.

Note 2: For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to $\pm 125^{\circ}$ C and ambient temperatures to $\pm 70^{\circ}$ C.

Note 4: These specifications apply for $\pm 5 \text{V} \leq \text{V}_\text{S} \leq +15 \text{V}$ and $-55^\circ\text{C} \leq \text{T}_\text{A} \leq 125^\circ\text{C}$, unless otherwise specified. With the LM748C, however, all temperature specifications are limited to $0^\circ\text{C} \leq \text{T}_\text{A} \leq 70^\circ\text{C}$.