D escription

The IC S674-01 consists of 2 separate configurable dividers. The A Divider is a 7 bit divider and can divide by 3 to 129. The B Divider consists of a 9 bit divider followed by a post divider. The 9 bit divider can divide by 12 to 519. The post divider has eight settings of $1,2,4,5,6,7,8$ and 10 giving a maximum total divide of 5190. The A and B Dividers can be cascaded to give a maximum divide of 669510 . The IC S674-01 supports the ICS673 PLL Building Block and enables the user to build a full custom PLL synthesizer.

Features

- Packaged as 28 pin SSO P (150 mil body)
- Supports ICS673 PLL Building Block
- U ser determines the divide by setting input pins
- Pull-ups on all select inputs
- Includes one 7-bit Divider for OUTA
- Includes one 9-bit Divider and one selectable Post Divider for OUTB
- O perating voltages of 3.3 V or 5.0 V
- Industrial temperature range available
- 25 mA drive capability at TTL levels
- Advanced, low power CMOS process

Block D iagram

Pin Assignment

A5 10	28] A 4
A6 2	27 А 3
S0 4	26 A2
S1 4	25-A1
S2 5	24-A0
VDD 6	$23 \square \mathrm{VDD}$
INA 7	22.1 OUTA
INB 8	$21 \square$ OUTB
GND 9	$20]$ GND
B0 10	19 GND
B1 11	18] B8
B2 12	17] в7
B3 13	16] в6
B4-14	15 ®5 $^{\text {c }}$

Post Divider Table

S2	S1	S0	Post
pin 5	pin 4	pin 3	Divide
0	0	0	10
00	0	1	2
0	1	0	8
0	1	1	4
1	0	0	5
1	0	1	7
1	1	0	1
1	1	1	6

Pin Description

Pin \#	N ame	Type	D escription
$1,2,24-28$	A5, A6, A0-A4	I(PU)	D ivider A word input pins. Forms a binary number from 3 to 129.
$3,4,5$	S0, S1, S2	I (PU)	Select pins for Post D ivider. See table above.
6,23	VD D	P	Connect to VDD.
7	IN A	I	D ivider A input.
8	IN B	I	Divider B input.
$9,19,20$	GN D	P	Connect to ground.
$10-18$	B0-B8	I(PU)	Divider B word input pins. Forms a binary number from 12 to 519.
21	OUTB	0	Divider B output.
22	OUTA	0	Divider A output.

Key: $\quad I(P U)=$ Input with internal pull-up resistor; I=Input (no pull-up); $0=0$ utput;
P = Power supply connection

External Components

The IC S674-01 requires a $0.01 \mu \mathrm{~F}$ decoupling capacitor to be connected between VDD and GND. It must be connected close to the IC S674-01 to minimize lead inductance. Terminating resistors of 33Ω can be used in series with the OUTA and OUTB pins.

D etermining (setting) the divider

The user has full control in setting the desired divide. The user should connect the appropriate divider select input pins directly to ground (or VDD, although this is not required because of internal pull-ups) during Printed Circuit Board layout, so that the IC S674-01 automatically produces the correct divide when all components are soldered. It is also possible to connect the inputs to parallel I/O ports in order to change divides.

The divides of the ICS674-01 can be determined by the following simple equations:
Divide $A=D A W+2$
Where \quad Divider A W ord (D AW) = 1 to 127 (0 is not permitted).
Divide $B=(D B W+8) \cdot P D$
Where \quad Divider B W ord (D BW) $=4$ to 511 (0,1,2,3, are not permitted). Post Divider (PD) = values on Page 2

For example, suppose Divide A is desired to be 61 and Divide B is desired to be 284, then $D A W=59, D B W=276$ and $P D=1$. This means $A 6: A 0$ is $0111011, B 8: B 0$ is 100010100 and $\mathrm{S} 2: \mathrm{SO}$ is 110 . Since all inputs have pull-ups, it is only necessary to ground the zero pins, namely $A 6, A 2, B 7, B 6, B 5, B 3, B 1, B 0$ and $S 0$.

U sing the IC S674-01 with the IC S673-01:

The ICS674-01 may be used with the ICS673-01 to build a frequency synthesizer. The following example shows a typical application when the reference clock is in the M Hz range:

If the reference is in the kHz range, for example 8 kHz , the following configuration may be more typical:

N ote that in both examples Divide B is connected to the output of the ICS673. This is because D ivide B has a higher operating frequency than Divide A.

IC S674-01 U ser C onfigurable D ivider

Parameter	Conditions	M inimum	Typical	M aximum	U nits
ABSO LUTE M AXIM UM RATINGS (stresses be ond these can permanentl damage the device)					
Supply Voltage, VD D	Referenced to GND			7	V
Inputs	Referenced to GND	-0.5		VDD +0.5	V
Clock Output	Referenced to GN D	-0.5		VDD +0.5	V
Ambient 0 perating Temperature		0		70	${ }^{\circ} \mathrm{C}$
Ambient 0 perating Temperature	I version	-40		85	${ }^{\circ} \mathrm{C}$
Soldering Temperature	M ax of 10 seconds			260	${ }^{\circ} \mathrm{C}$
Storage T emperature		-65		150	${ }^{\circ} \mathrm{C}$
DC CH ARACTERISTICS (VDD $=5.0 \mathrm{~V}$ unless otherwise noted)					
O perating V oltage, VDD		3		5.5	V
Input High Voltage, VIH	All A, B, and S pins	2			V
Input Low Voltage, VIL	All A, B, and S pins			0.8	V
Input High Voltage, VIH, IN A and INB only		(VDD/2)+1	VDD/2		V
Input Low Voltage, VIL, IN A and IN B only			VDD/2	(VDD/2)-1	V
Output High Voltage, VOH	$10 \mathrm{H}=25 \mathrm{~mA}$	2.4			V
O utput Low Voltage, VOL	$10 \mathrm{~L}=25 \mathrm{~mA}$			0.4	V
IDD, Op. Supply Cur., DivA $=$ DivB $=20$ at 3.3 V	No Load, fin $=100 \mathrm{MHz}$		3		mA
ID D, 0 p. Supply Cur., DivA $=\mathrm{DivB}=20$ at 5 V	No Load, fin $=100 \mathrm{MHz}$		5		mA
Short Circuit Current, outputs			± 70		mA
On-Chip Pull-up Resistor	A, B, S select pins		270		k Ω
Input Capacitance	A, B, S select pins		5		pF
AC CH ARACT ERIST ICS (VD D $=5.0 \mathrm{~V}$ unless otherwise noted)					
Input Frequency, Divider A	at 3.3 V	0		135	M Hz
Input Frequency, Divider B	at 3.3 V	0		180	M Hz
Input Frequency, D ivider A	at 5 V	0		200	M Hz
Input Frequency, Divider B	at 5 V	0		235	M Hz
Input Frequency, Divider A (Industrial temperature)	at 3.3 V at $85^{\circ} \mathrm{C}$	0		125	M Hz
Input Frequency, Divider B (Industrial temperature)	at 3.3 V at $85^{\circ} \mathrm{C}$	0		170	M Hz
Input Frequency, Divider A (Industrial temperature)	at 5 V at $85^{\circ} \mathrm{C}$	0		190	M Hz
Input Frequency, Divider B (Industrial temperature)	at 5 V at $85^{\circ} \mathrm{C}$	0		220	M Hz
Output Clock Rise Time	0.8 to 2.0 V		1		ns
Output Clock Fall Time	2.0 to 0.8V		1		ns
OUTB Clock D uty Cycle (see note)	at VDD/2	45	49 to 51	55	\%
OUTB C lock Duty C ycle, odd post dividers	at VDD /2, except PD $=1$	40		60	\%
OUTA Clock Duty Cycle (see note)	at VDD/2	20		98.5	\%

N ote:

The duty cycle of OUTA is dependent on the selected divide. This is because OUTA goes low for 2 input clock cycles on IN A. So, for example, if a divide of 20 is selected, the duty cycle will be 90%.
Similarly, if $P D=1$ is selected for OUTB, the duty cycle will be dependent on the selected divide. In this case OUTB goes high for approximately 8 input clock cycles on IN B.

Package 0 utline and Package Dimensions

Ordering Information

Part/O rder N umber	M arking *	Package	Temperature
ICS674R-01	$674 R-01$	28 pin narrow SSO P	0 to $70^{\circ} \mathrm{C}$
ICS674R-01T	$674 R-01$	28 pin SSO P on tape and reel	0 to $70^{\circ} \mathrm{C}$
ICS674R-01I	$674 R-011$	28 pin narrow SSOP	-40 to $85^{\circ} \mathrm{C}$
ICS674R-01IT	$674 \mathrm{R}-011$	28 pin SSO P on tape and reel	-40 to $85^{\circ} \mathrm{C}$

*This shows the top line marking. The part will have the letters ICS in a box on the upper left hand corner.

While the information presented herein has been checked for both accuracy and reliability, ICS assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

