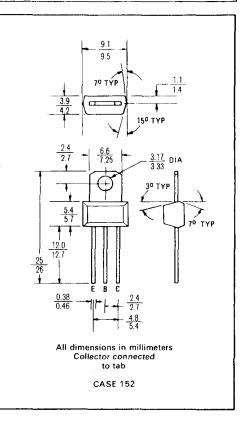

NPN SILICON ANNULAR TRANSISTORS

... designed for high-voltage video and luminance output stages in TV receivers.

- High Collector-Emitter Breakdown Voltage BV_{CEO} = 300, 250, and 180 Vdc @ I_C = 10 mAdc
- Low Collector-Emitter Saturation Voltage —
 VCE(sat) = 0.75 Vdc (Max) @ I_C = 30 mAdc
- Low Collector-Base Capacitance —
 C_{cb} = 3.0 pF (Max) @ V_{CB} = 30 Vdc

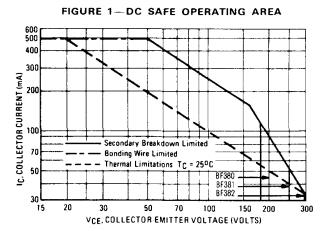
NPN SILICON HIGH VOLTAGE AMPLIFIER TRANSISTORS



MAXIMUM RATINGS

Rating	Symbol	BF 380	BF 381	BF 382	Unit
Collector-Emitter Voltage	VCEO	180	250	300	Vdc
Collector - Base Voltage	V _{CB}	180	250	300	Vdc
Emitter-Base Voltage	V _{EB}	_	5		Vdc
Collector Current—Continuous	¹c	_	500		mAdc
Total Device Dissipation @ T _A = 25 °C Derate above 25 °C	P _D		1.0 8.0		Watt mW/°C
Total Device Dissipation @ T _C = 25 °C Derate above 25 °C	PD		10 80		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-!	55 to +1	50	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θус	12.5	°C/W
Thermal Resistance, Junction to Ambient	()JA	125	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25 °C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			<u>'</u>			
Collector-Emitter Breakdown Voltage (1)		BVCEO				Vdc
$(I_C = 10 \text{ mAdc}, I_B = 0)$	BF 380		180		_	
	BF 381		250		· -	
	BF 382		300	Au-Squ.	-	
Collector-Base Breakdown Voltage		BVCBO				Vdc
$(I_C = 100 \mu Adc, I_F = 0)$	BF 380	020	180			
	BF 381		250		-	
	BF 382		300		_	
Emitter-Base Breakdown Voltage		BVEBO		+-	_	Vdc
$(I_E = 10 \mu Adc, I_C = 0)$			5.0		1 1	
Collector Cutoff Current		ICBO				nAdc
$(V_{CB} = 100 \text{ Vdc}, I_{E} = 0)$	BF 380			_	50	
$(V_{CB} = 200 \text{ Vdc}, I_{E} = 0)$	BF 381				50	
$(V_{CB} = 250 \text{ Vdc}, I_{E} = 0)$	BF 382				50	
ON CHARACTERISTICS						
DC Current Gain		hFE		_		_
$(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$			25		1	
Collector-Emitter Saturation Voltage		V _{CE(sat)}				Vdc
$(I_C = 30 \text{ mAdc}, I_B = 6.0 \text{ mAdc})$				0.3	0.75	
Collector-Emitter Knee Voltage (T _{.i} = 150 °C)		V _{CEK}				Vdc
$(I_C = 30 \text{ mAdc}) (2)$		J		11		
DYNAMIC CHARACTERISTICS						•
Current-Gain—Bandwidth Product		fT				MHz
$(I_C = 15 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$			_	90	-	
Collector-Base Capacitance		ССВ				Pf
$(V_{CB} = 30 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$			-	2.2	3.0	

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. (2) Value of V_{CE} at which h_{FE} is 80% of its value at V_{CE} = 50 Vdc, l_C = 30 mAdc.

The Safe Operating Area Curves indicate IC—VCE limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum $T_{\rm J}$, power-temperature derating must be observed for both steady state and pulse power conditions.

FIGURE 2-DC CURRENT GAIN

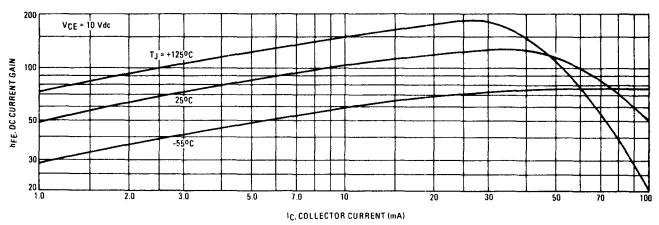


FIGURE 3-CAPACITANCES

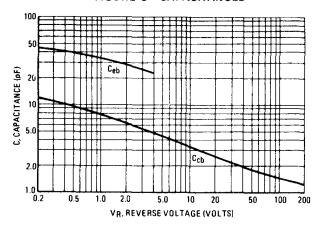


FIGURE 4-CURRENT-GAIN-BANDWIDTH PRODUCT

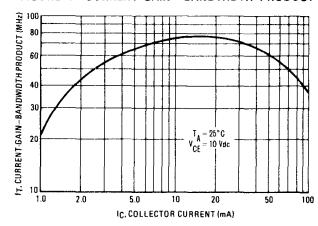
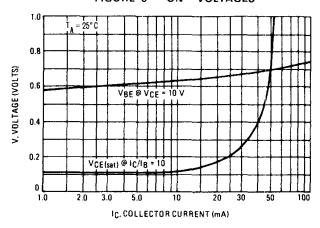



FIGURE 5-"ON" VOLTAGES

APPLICATIONS INFORMATION

The BF 382 is primarily designed for use in the R, G, and B output stages of color television receivers and with a high BV_{CEO}, it can supply the video amplitude requirements of any known system. The low feedback capacitance provides good video bandwidth with modest drive current requirements. Typical drive is from an emitter-follower with a 4.7 k emitter-resistor operated from a 20-Volt supply. It will, therefore, be operable directly from a number of available chroma demodulators. The low output capacitance of this device adds little to the total load capacitance, allowing improved bandwidth for a given collector load resistor. Two typical applications for the BF 382 are shown in Figures 6 and 7.

Device dissipation will reach approximately 1.6 Watts under worst-case signal conditions and some heat sinking is required. At an operating ambient temperature of 65°C, a thermal resistance $\theta_{\rm JA} = 150$ -65/1.6 = 53°C/W will be required. The junction-to-case thermal resistance, $\theta_{\rm JC}$, of the device is

12.5°C/W, thus a heat dissipator of 40.5°C/W, or lower, will be required. A black anodized 0.020" thick aluminum plate measuring 1"×2" can be folded into a channel shape and formed with «feet» to snap into a printed circuit panel for support. This will provide the safety factor.

Used as a color difference output, where drive and bandwidth requirements are less severe, the BF 382 can be operated with 27 k ohm load resistors (worst-case dissipation would then be only 0.6 Watts). The device can, therefore, be operated as a color-difference output without any heat radiator in ambient temperatures to 150-0.6 (125) = 75 °C.

In addition the safe operating area of the BF 382 will fill the requirements of the luminance output function with a total equivalent load of 5.0 kilohms. Worst-case dissipation can reach 3 Watts, this requires a total $\theta_{\rm JA}$ of 150-65/3 = 28.4 °C/W. This 28.4 °C/W means a heat dissipator of 15.9 °C/W, (approximately 2"×3" aluminum plate) will be required.

FIGURE 6-BF 382 AS RGB OUTPUT, MATRIXING COLOR DIFFERENCE AND LUMINANCE INPUTS

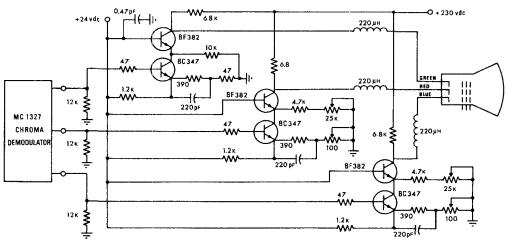


FIGURE 7-HEAT SINK VERSUS SURFACE AREA

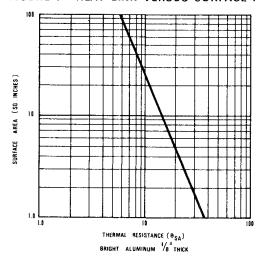
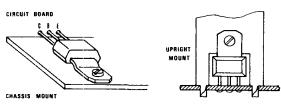



FIGURE 8—TYPICAL THERMAL RESISTANCE DATA—
TAB TO SINK

COMDITION	θςsin ^O C/W	MOUNTING SCREW TORQUE (in./ibs)		
NO GREASE	4.25	5		
WITH DOW-340	2.1	2		
THERMAL COMPOUND	1.7	5		
WITH DOW-340 AND 2 MIL	4.7	2		
MICA WASHER	4.3	5		

FIGURE 9-TYPICAL MOUNTING METHODS

