

30BQ040PbF

SCHOTTKY RECTIFIER

3 Amp

$$I_{F(AV)} = 3.0 Amp$$

 $V_R = 40 V$

Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	40	V
I _{FSM} @t _p =5µs sine	2000	Α
V _F @3.0 Apk, T _J = 125°C	0.43	V
T _J range	- 55 to 150	°C

Description/ Features

The 30BQ040PbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

Voltage Ratings

Part number	30BQ040PbF
V _R Max. DC Reverse Voltage (V)	40
V _{RWM} Max. Working Peak Reverse Voltage (V)	

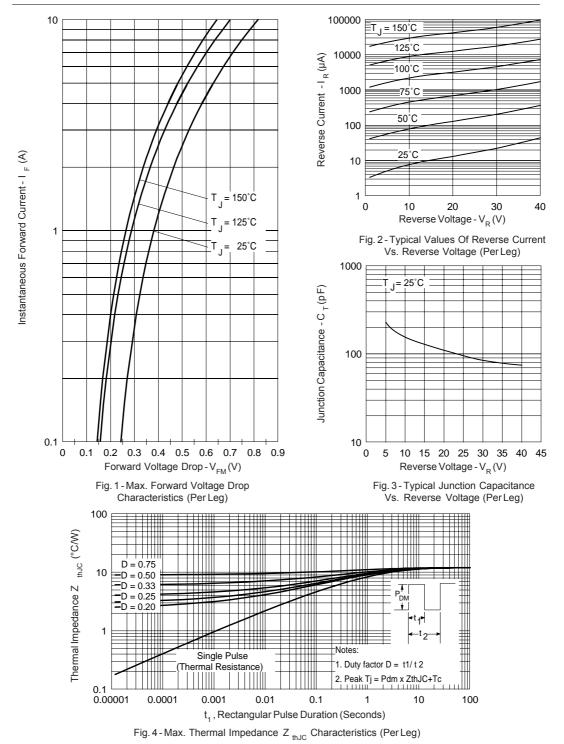
Absolute Maximum Ratings

	Parameters	30BQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle @ T _L = 118 °C, rectangular wave form	
		4.0		50% duty cycle @ T _L = 110 °C, ı	rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	2000	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	110		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	6.0	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.0\text{A}, L = 12\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	30BQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.53	V	@ 3A	T _J = 25 °C
		0.68	V	@ 6A	
		0.43	V	@ 3A	T _J = 125 °C
		0.57	V	@ 6A	
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	V _R = rated V _R
		30	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	230	pF	V _R = 5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%


Thermal-Mechanical Specifications

	Parameters	30BQ	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DC operation
wt	Approximate Weight	0.24 (0.008)	g (oz.)	
	Case Style	SMC		Similar to DO-214AB
	Device Marking	IR3F		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

Bulletin PD-20407 rev. A 07/04

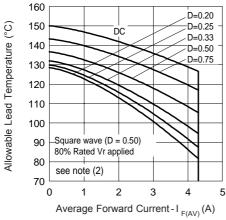
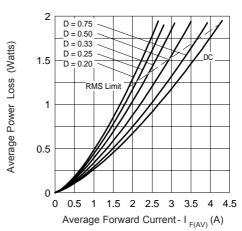
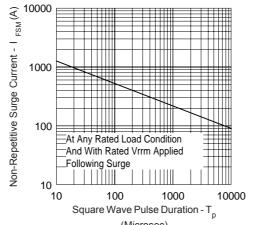
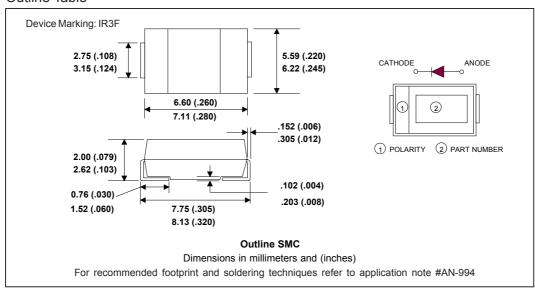
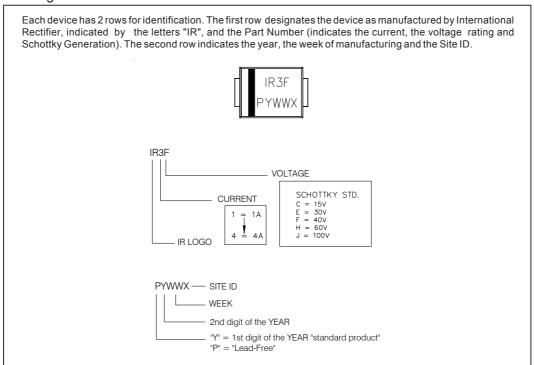


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

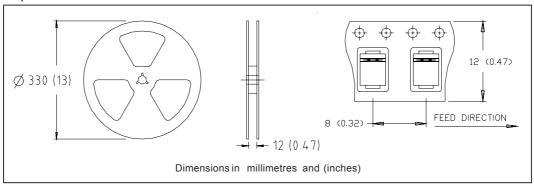




Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

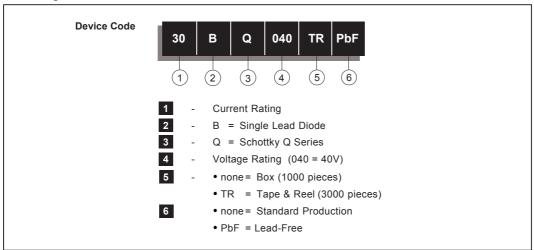

(Microsec)
Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

 $\begin{aligned} \textbf{(2)} \;\; &\text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} \cdot (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \textbf{x} \, \textbf{R}_{\text{thJC}}; \\ &\text{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{\text{F(AV)}} \textbf{x} \, \textbf{V}_{\text{FM}} \textcircled{@} \left(\textbf{I}_{\text{F(AV)}} / \textbf{D}\right) \; (\text{see Fig. 6}); \\ &\text{Pd}_{\text{REV}} = \textbf{Inverse Power Loss} = \textbf{V}_{\text{R1}} \textbf{x} \, \textbf{I}_{\text{R}} \left(\textbf{1} - \textbf{D}\right); \, \textbf{I}_{\text{R}} \textcircled{@} \, \textbf{V}_{\text{R1}} = 80\% \, \text{rated V}_{\text{R}} \end{aligned}$

Outline Table



Marking & Identification



Bulletin PD-20407 rev. A 07/04

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/04